
NPSCS-91-011

NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A238 741

&2,R A DO3

Persistence Search - A New Search Strategy For
The Dynamic Shortest Path Problem

Man-Tak Shing
Michael Ni. Mayer

APRIL 1991

Approved for public release; distribution is unlimited.

Prepared for:

Naval Postgraduate School

Department of Computer Science, Code CS
Monterey, California 93943-5100

91-06045
, ., i ll' lllll' lll', l ,il'I! 1 1 1 'Iu

,I1

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research funded by the Naval Postgraduate School.

Reproduction of all or part of this report is authorized.

Man-Tak Shing /
Associate Professor
of Computer Science

Reviewed by: Released by:

ROBERT B. MCGHEE Paul J. Marto
Chairman Dean of Research
Department of Computer Science

UNCLASSIFIED
SECUrJTY C3.ASSIFICAT ON OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLAFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABIUTY OF REPORT
Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NPSCS-91-0I 1

6&. NAMEOPERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7& NAME OF MONITORING ORGANIZATION
Computer Science Dept. (it *opabO)

CNavaomtercine S lCS Research Council of Naval Postgraduate SchoolNaval Postgraduate Schoo ________
6c. ADDRESS (Cty, Scale, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5100 Monterey, CA 93943

8a , (NFrING'SPONSOING 8b. FIC SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Naval Postgraduate School 0 & MN, Direct Funding
8c. ADDRESS (Ciy, State, and ZIP Code) E OF UNDINGNUMBERS

PROGRAM PROJECT TASK WORK UNIT
Monterey, CA 93943 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (IncJude Secunty C'assification)

Persistence Search - A New Search Strategy For The Dynamic Shortest Path Problem (U)

12. PERSONAL AUTHORS)
M.T. Shing, M.%. Mayer

13a. TYPE OF REPORT 13.T.!ME OVERED 14. DATE OF REPORT (Year, Month, Day) 15.38 PAGE OUNT
Techical FROM 10/88 TO 9/90 1991 Ap 1. i1 38

16. SUPPLEMENTAR OTATION

17. COSATI CODES 18 SUBJECT TERMS (Contnue on reverse d necessary and identify by block rumber)

FIELD GROUP SUB-GROUP persistence search, path planning, maze exploration, dynamic shortest path

19. ABSTRACT (Continue on reverse if necessary and identify by block roumber)
The research reported in this paper deals with the problem of searching through an unknown terrain by a physical
agent such as a robot. The unknown terrain over which the agent will travel is represented by an undirected graph.
The agent has no prior knowledge of the graph. It can only learn about its environment by physically roaming it. Given
a starting location s, the agent tries to reach a target location t using the minimum amount of physical movement. This
problem, which is a natural generalization of the classical shortest path problem, will be referred to as the dynamic
shortest path problem. Most of the classical shortest path algorithms perform very poorly in the scenario of a physical
agent traversing an initially unknown search space. They do not attempt to minimize the amount of physical move-
ment required by the agent to reach the goal location. In order to overcome the failings of these search algorithms in
dealing with searches of this particular nature, a new search strategy, called persistence search, is developed and pre-
sented in this paper.

ZU. UI] HIBU I .AVAILABILI I Y OF ABS I RAG I 1A 2 I IAC t SECU-I I Y CLASSIFICA I ION
r] UNCLASSIFIED/UNLIMITED C] SAME AS RPT [j DTIC USERS UNCLASSIFIED

22a. NAME OF MESPONSIBLE INDIVIDUAL 22b, TELEPHONE (/ncde 22c. OFFICE SYMBOL
Man-Tak Snin (408) 646-2634 CS/SH

DO FORM 1473,84 MAR 83 APR edibon may be used untl exhausted SECURITY CLASSIFICATION OF THIS PAGE
Al other edtons are obsote UNCLASSIFIED

Persistence Search - A New Search Strategy For

The Dynamic Shortest Path Problem

Man-Tak Shing 1) and Michael M. Mayer (2)

ABSTRACT

The research reported in this paper deals with the problem of searching

.hrougi, an unoao, m i, . a physical agent such as a robot. im uu-

known terrain over which the agent will travel is represented by an
undirected graph. The agent has no prior knowledge of the graph. It can

only learn about its environment by physically roaming it. Given a starting
location s, the agent tries to reach a target location t using the minimum
amount of physical movement. This problem, which is a natural generaliza-

tion of the classical shortest path problem, will be referred to as the dynamic

shortest path problem. Most of the classical shortest path algorithms per-

form very poorly in the scenario of a physical agent traversing an initially

unknown search space. They do not attempt to minimize the amount of

physical movement required by the agent to reach the goal location. In

order to overcome the failings of these search algorithms in dealing with

searches of this particular nature, a new search strategy, called persistence

search, is developed and presented in this paper.

KEYWORDS:

persistence search, path planning, maze exploration, dynamic shortest path

(1) Man-Tak Shing is with the Computer Science Department, Naval Postgraduate School, Monterey,
CA 93943. This paper was prepared in conjunction with research funded by the Naval Postgraduate
School.

(2) LT Michael M. Mayer, USN is with the Software Support Department, Naval Security Group Ac-
tivity Skaggs Island, Sonoma, CA 95476. Research reported here was done while LT Mayer was a
graduate student at the Computer Science Department, Naval Postgraduate School.

-2-

1. INTRODUCTION

One of the central problem-solving techniques in Al is the use of search. In this paper,

we focus our attention on the problem of searching through an unknown terrain by a physical

agent such as a robot. The unknown terrain over which the agent will travel is represented by

an undirected graph. The agent has no prior knowledge of the graph. It can only learn about

its environment by moving through it. Starting at a given vertex s, the agent tries to reach a

target vertex t using the minimum anount of physical movement. This problem, which is a

natural generalization of the classical shortest path problem, will be referred to as the dynamic

shortest path problem. If the agent has prior knowledge of the entire graph, it can minimize

its physical movement by first computing the shortest path from s to r using the standard

shortest path algorithms and then moving towards t along the shortest path. (See for exam-

ple, [2] and [3] for a survey of the shortest path algorithms.) Without complete information

of the entire graph, no optimum algorithm (i.e. one that always produces the shortest path

from s to t in any given graph) can exist. The reason is because, without prior knowledge of

the entire graph, the agent must physically roam its environment, learning about it by sensing

the immediate surroundings. A state of any state-space search algorithm now depends on

both the current physical location of the agent and the total amount of physical movement that

has been made already. Since the energy or time involved in physical movement cannot be

recovered once expended, any optimum algorithm must require the agent to traverse along the

shortest path from s to t at all times. This is impossible since the algorithm does not have

any prior knowledge of the graph to start with. Hence, any algorithm for solving the dynamic

shortest path problem is a heuristic algorithm. Such algorithm is considered to be "good" if it

produces paths which are not much longer than the shortest paths most of the time.

Most of the classical shortest path algorithms perform very poorly in the scenario of a

physical agent traversing an initially unknown terrain. They do not attempt to minimize the

amount of physical movement required by the agent to reach a desired goal location. These

algorithms ignore the physical aspects of search, measuring the quality of their solutions only

-3-

by the amount of computation required. In order to overcome the failings of these search

algorithms in dealing with searches of this particular nature, new search strategies and new

measuires for ealuating such strategies are needed.

One measure for comparing the performance of the algorithms for dynamic problems is

the ratio

R -the total distance traversed by the agent
the length of the shortest path from s to t

In [4], Papdimitriou and Yannakakis studied several versions of the dynamic shortest

path problem. They have devised search trategies that cptimize the ratio R foi t, , - p-ciai

cases: layered graph with bounded width and two-dimensional scenes with unit square obsta-

cles. They further showed that no bounded ratio is possible for slightly more general graphs

and scenes, and th-e computational problem of devising optimal search strategies for the

dynamic shortest path is PSPACE-Complete. Hence, a new heuristic search st itegy, called

persistence search, is developed and presented in this paper to tackle the dynamic shortest

path problem for general graphs.

2. PERSISTENCE SEARCH

As stated in the previous section, the agent begins with no knowledge of the graph. It

can learn about the graph by moving from vertex to vertex via the edges incident to the ver-

tices, and it can remember the vertices and edges which it has explored by dropping markers

along the way [1]. At each vertex v, the agent has the ability to discover all the edges

incident to the vertex v. Additionally, for each unexplored edge incident to v, the agent has

some estimation of the distance from the vertex v to the target vertex t via the unexplored

edge. Starting at the vertex s, persistence search directs the agent towards the destination ver-

tex t as follows:

-4-

Algorithm I

Begin

(1) EXIT:= FALSE.

(2) c := s; /* c denotes the current position of the agent */

(3) L :=empty; /* L denotes the set of edges to be explored, called frontier edges */

(4) Repeat

(5) Mark c as explored.

(6) Ifc =t

(7) Then EXIT:= TRUE /* search has succeeded */

(8) Else Begin

(9) For each unexplored edge (c, w) do

(10) Begin

(11) If w is explored Then mark the edge (c, w) as explored

(12) Else add the edge (c, w) to the set L.

(13) End.

(14) If L is not empty

(15) Then Begin

(16) Among the frontier edges in L, find the frontier edge e that minimizes

the equation

f (e) = pf x g(v) + h(e), (1)

where v is the explored vertex adjacent to e. g (v) is the shortest

distance from c to v using only edges in the explored subgraph,

h (e) is the estimated future cost of e, which is the lower bound

estimate for the distance from v to t via the unexplored edge e,

and pf is the persistence factor, a real number between 0.0

and 1.0 for discounting the cost of "backtracking" to the frontier

edge e.

-5-

(17) Move the agent from c to v along the shortest path using only edges

in the explored subgraph.

(18) Mark the edge e explored.

(19) Let w be the vertex at the other end of e. Move the agent along e to w.

(20) C := w;

(21) End

(22) Else EXIT := TRUE /* search has failed */

(23) End

(24) Until EXIT;

End.

While the above algorithm is very close to the algorithm for A* search [5], one should

note the subtle but important differences. The function g(v) is computed from the current

vertex c to v, rather than from the initial starting vertex s. This is a logical choice for g (v)

since the agent must be moved physically from the current position c to the vertex v before it

can resume its exploration from v.

A second difference is in the use of the persistence factor pf to bias the cost function

g (v). The persistence factor varies between 0.0 and 1.0 and serves to discount th,. cost of

"backtracking" versus estimated future cost, h(e). By varying the persistence factor, the

behavior of the persistence search can be dramatically altered. When the persistence factor is

0, the cost of "backtracking" from one vertex to another becomes zero and the formula for

rating the frontier edges reduces to:

f(e) = h(e) (2)

which is equivalent to that used for best-first search [5]. Each frontier edge is ranked only

according to its estimated future cost. The agent will move about the explored search space

without regard for the amount of physical movement required, traversing to whichever vertex

is closest to goal.

-6-

When the persistence factor is equal to 1, persistence search behaves more like hill-

climbing search [5]. Since the cost of moving from the current vertex to another verex ;n

the explored subgraph becomes more expensive, the agent tends to be more persistent in con-

tinuing the exploration from a vertex neaer to the present location.

3. SEARCHING THROUGH A RECTILINEAR MAZE

As an initial step in evaluating the performance of the proposed algorithm, persistence

search is used to tackle a restricted version of the dynamic shortest problem: the case of an

agent traversing a random rectilinear maze.

The unknown terrain over which the agent will travel is represented by a rectilinear

graph or grid-graph as shown in Figure 1.

...........

(a) a rectilinear maze (b) the corresponding grid-graph

Figure 1

Vertices are arranged in a rectangular fashion with edges connecting vertices immedi-

ately above, below, right and left (north, south, east and west respectively), and the vertices

are distinguished from one another by their X and Y coc-dinates. Locations within the maze

are either passable or impassable. Impassable locations in the maze are represented by

disconnected vertices in the graph, making them unreachable from any direction.

-7-

The agent begins with no knowledge of the graph. It can learn about the graph only as

it moves from vertex to vertex via the edges connecting them. The agent's ability to sense its

surroundings is limited to determining whether the immediate neighbors of the current vertex

are passable or impassable. Since the terrain is a grid-graph, the agent is only able to move

and survey in the four cardinal directions.

Additionally, the agent knows its position relative to the goal. Several differcnt means

could be used to accomplish this. If the agent initially knows the goal's position relative to

its own, it can maintain this knowledge through dead reckoning as it moves about the maze

from its initial starting point. Using this information, the agent can determine the rectilinear

distances from the goal to its current location as well as to any of the passable locations adja-

cent to its current location. Rectilinear distance is a lower bound for the number of steps

necessary to move from the current position to zhe goal. The rectilinear distance from a ver-

tex v to the goal t can be computed using the formula

f X" - X, I + I YV - Yt

where (Xv, Y,) and (X,, Y,) are the coordinates of v and t respectively.

We can also direct the agent to the goal using either an active guidance system like radar

or a passive guidance system like a beaconing system. While only lines of bearing are

required to choose which immediate neighbor is closer to the goal, the goal's exact location is

needed to totally order the search space. If the goal is northeast of the current location, then

the immediate neighbors to the north and the east are closer to the goal and have the same

rectilinear distance to the goal. However, when coniparing wide'y separated locations, a rank-

ing for the locations based on their closeness to the goal cannot be determined without the

exact location of the goal. If location P is north of the goal and location Q is south of the

goal, there is no static way to tell which one is closer merely by their relative direction to the

goal. However, by triangulating lines of bearing taken from different locations, the exact

location of the goal can be determined.

-8-

Since t. edges in the grid-graph all have equal length, we can assume that the agent

alway, ' ,ows the cost of traversing an unexplored edge. Hence, instead of keeping track of a

st of frontier edges, we can simplify the implementation of the algorithm by keeping track of

the set of unexplored vertices that are adjacent to the frontier edges. The algorithm for

searching through an unknown rectilinear maze is as follows:

Algorithm II

Begin

(I) EXIT := FALSE;

(2) c := s; /* c denotes the current position of the agent */

(3) L := (s}; /* L denotes the set of vertices to be explored, called fr:.,rier vertices */

04) Repeat

(5) Remove c from L.

(6) Mark the vertex c explored.

(7) If c = t

(8) Then EXIT := TRUE /* search has succeeded */

(9) Else Begin

(10) L := L .. { the set of unexplored immediate neighbors of c

(11) If L is not empty

(12) Then Begin

(13) Among the frontier vertices in L, find the frontier vertex v that

minimizes the equation

f(v) = pf xg(v)+h(v), (3)

where g (v) is the shortest distance from c to v using only

paths with explored vertices as intermediate vertices, h (v) =

I X, - X1 I + I Y" - Y1 !, and pf is the persistence factor

with value between 0.0 and 1.0.

-9-

(14) Mov- the agent from c to v along the shortest path using only

explored vertices as intermediate vertices.

(15) c := v;

(16) End

(17) Else EXIT:= TRUE /* search has failed */

(18) End

(19) Until EXIT;

End.

In order to reduce the computation required by persistence search, we further modify the

algorithm as follows:

Algorithm Ill

Begin

(I) EXIT := FALSE;

(2) c := s; /* c denotes the current position of the agent */

(3 ' L := (s); /* L denotes the set of vertices to be explored, called frontier vertex */

(4) Repeat

(5) Remove c from L.

(6) Mark the vertex c explored.

(7) If c = t

(8) Then EXIT := TRUE /* search has succeeded */

(9) Else Begin

(10) L := L the set of unexplored immediate neighbors of c).

(11) If c has an unexplored immediate neighbor w such that h (w) < h (c)

where h (w) and h (c) denote the rectilinear distances from w and c

to the goal location t respectively

(12) Then c :-= w and move the agent to the vertex w

- 10-

(13) Else If L is not empty

(14) Then Begin

(15) Among the frontier vertices in L, find the frontier vertex v that

minimizes the equation

f (v) = pf x g(v) + h(v),

where g (v) is the shortest distance from c to v using only

paths with explored vertices as intermediate vertices, h (v) =

IXv - X t I + I Yv, - Y, I, and pf is the persistence factor

with value between 0.0 and 1.0.

(16) Move the agent from c to v along the shortest path using only

explored vertices as intermediate vertices.

(17) c := v;

(18) End

(19) Else EXIT:= TRUE /* search has failed */

(20) End

(21) Until EXIT;

End.

Now, the agent always moves to the immediate neighbor w of the current vertex c if

h(w) < h(c) (lines 11-12 in Algorithm III). A simple north, east, south, west preference

serves as a heuristic to break ties between neighbors of equal estimated future cost. This

modification greatly reduces the computation required by the agent since it no longer has to

examine the list of frontier vertices whenever c has an immediate neighbor with a cheaper

future cost. Algorithm HI can be regarded as a hybrid of hill climbing search and persistencz

search. Note that when pf = I, the physical moves produced by Algorithms II and III are

identical for ail rectilinear mazes. When pf < 1, Algorithms II and III only produced identi-

cal moves for rectilinear tree mazes, i.e. mazes without circuits.

-11 -

4. EVALUATING THE PERFORMANCE OF THE ALGORITHMS

There are two factors governing the performance of the proposed algorithms: the compu-

tational efficiency of the algorithms and the quality of the solutions productd. As mentioned

in Section 1, the quality of the solution can be measure by the error ratio R, which is equal to

the total number of edges traversed by the agent to reach the goal
the length of the shortest path from s to t in the entire maze

The computational efficiency of the algorithms can be measured by counting the total number

of current vertices examined plus the total number of vertices examined while computing the

shortest paths from a current vertex back to the frontier vertices via the explored subgraph.

Given any integer n and any pf value between 0.0 and 1.0, one can always come up

with a worst-case maze with n vertices that requires 0 (n 2) vertex-examinations and the solu-

tion produced by the algorithms has an 0 (n) error ratio. Figure 2 shows two worst-case

examples one for the pf value of 0 and the other for the pf value of 1.

000@ @

0 00 00 0 0 0 0 0
0 0 0 0* 0 0 0
0 0 0* 0 0 0 0
0 00 00* 0 0 0 0
0 0 0* 0 0 0 0
0 0 0* 0 0 0 0
00 00 00 0 0 0 0

R 1* 0 0 O01

I(a) a worst-case example for pf = 0.0 (b) a worst-case example for pf = 1.0

Figure 2

While the agent may have to visit every vertex in the graph before finding the goal in

the worst-case, the total distance traversed by the agent may be substantially lower on the

- 12 -

average. In order to better judge the performance of the persistence search algorithms, we

have implemented Algorithms II and III as well as a hill-climbing search algorithm in the C

programming language and applied the algorithms to a large set of random mazes generated

by the algorithm described in the next section.

4.1 MAZE GENERATION

The random maze generator operates in two modes, creating mazes with or without

cycles. The mazes without cycles can be naturally represented as trees and those with cycles

can be represented as graphs. We have separated the tree mazes from the nontree mazes

because of the way persistence search backtracks. When backtracking, persistence search

always travels to the cheapest frontier vertex (i.e. the frontier vertex with the cheapest com-

bined cost) along the shortest path in the explored subgraph. This gives I, rsistence search an

extra advantage over hill-climbing search. The hill-climbing search, being a variant of depth-

first search, does not take short-cuts and always traces back to the cheapest frontier vertex

along the path from which it came. In non-tree mazes, this results in a large amount of back

and forth movement by the hill-climbing search algorithm as it winds its way out of large

open areas. This inefficient behavior can be seen clearly in Figure 3, where the hill-climbing

search requires the agent (which at vertex 13) to visit all blank vertices before backtracking to

vertex 14, while persistence search allows the agent to go from vertex 13 to vertex 14 via ver-

tex s in two mechanical steps. If the niaze is a tree, there are no circuits and persistence

search no longer has such an advantage.

The maze generation algorithm, makemaze, uses a depth-first algorithm to create a ran-

dom path through an initially empty maze, placing obstacles at intervals along its path accord-

ing to a parameter called maze density. Makemaze begins by laying obstacles along the boun-

dary of the rectangular maze. It then picks a random starting point within the maze. The

algorithm maintains a trail of the locations in the maze it has explored.

-13-

6 0000 0

Figure 3

At each step along its path, it randomly determines whether it must turn from its current

direction. If so, it places an obstacle in the direction it was going and continues on in a ran-

dom new direction. The higher the maze density, the more likely it is that the path will turn

and an obstacle will be created. If the maze generator becomes "blocked" by its own trail or

obstacles, it backtracks along its original trail until it comes to a new location and resumes its

exploration.

If makemnaze is restricted to creating mazes which are trees, it must also check to see if

the next location it is going to explore will create a cycle in the maze. If so, it places an obs-

tacle there instead and chooses a new direction. Hence, there is only one path between any

two vertices in a tree maze.

4.2 THE HILL-CLIMBING SEARCH

For comparison with persistence search, a hill-climbing search algorithm was imple-

mented. We chose to compare the proposed algorithm against the hill-climbing search

because the hill-climbing search (or some other depth-first search variant) is the only

- 14-

reasonable alternative to persistence search in guiding a physical agent through an unknown

bounded terrain. The other alternatives, like best-first search or some variants of A* search,

require too much movement on the part of the physical agent, causing it to physically

crisscross known search space to expand new vertices.

The hill-climbing search algorithm is very similar to the algorithm used to create the

maze, as they both are variants of the depth-first search algorithm. The hill-climbing search

algorithm uses a simple stack to keep track of its current path and a bitmap to mark the ver-

tices it has visited. It places the unexplored immediate neighbors of the i,'t vertex on the

stack according to the non-increasing order of their estimated future costs, leaving the one

with the cheapest estimated future cost on the top of the stack. It then pops a vertex off the

stack, updates the current vertex and moves the physical agent to the new current vertex.

4.3 SPEEDING UP THE PERSISTENCE SEARCH

A major portion of the computation is spent in Line 13 of Algorithm II and Line 15 of

Algorithm III for finding the shortest-path from the current vertex to the cheapest frontier ver-

tex in the list L. Since the edges in the grid-graph all have equal length, a simple breadth-

first search (BFS) is used to scan the explored subgraph for the cheapest frontier vertex each

time the list L has to be examined. In order to reduce the time required to compute these

shortest paths, "branch-and-bound" is introduced into the breadth-first search as follows. At

the beginning of the BFS, the lower bound for the cheapest combined cost is initialized to the

smallest estimated future cost of all the frontier vertices in L and the upper bound for the

cheapest combined cost is initialized to positive infinity (or some very large positive number).

During the course of the search, the upper bound for the cheapest combined cost is set to the

lowest combined cost of the frontier vertices visited so far while the lower bound for the

cheapest combined cost is set to the sum of the current depth reached by BFS plus the

cheapest estimated future cost among all frontier vertices in L. To keep track of the smallest

estimated future cost among all the frontier vertices in L, the vertices in L are maintained in

- 15 -

the form of a min-heap, with the frontier ve:'tex which has the smallest estimated future cost

on top. The min-heap is updated whenever vertices are added to or deleted from L. The

search terminates when the lower bound is greater than or equal to the upper bound, thus sig-

naling that the frontier vertex with the lowest combined cost has been found. The agent can

then traverse from the current vertex c to the frontier vertex v via the search tree constructed

by BFS.

4.4 THE EXPERIMENTAL RESULTS

Two experiments were conducted to study the performance of the proposed algorithms.

In the first experiment, a total of 8000 runs were performed and analyzed empirically. Input

to the first experiment was generated as follows. Two thousand mazes, in groups of 50, were

created using the algorithm described in Section 4.1. The mazes in each group were gen-

erated based on a unique combination of maze type, maze density and dimension of the

underlying rectangular grid. (See Table I for a summary of the mazes.) Two pairs of pass-

able locations were chosen from each maze, and two experimental runs were performed for

each of the location pair [a, b] chosen, once from a to b and once from b to a.

The results of the first experiment are summarized in Tables 2-7. From the experimental

results, one can conclude that persistence search (both Algorithms II and III) outperforms

hill-climbing search for bozh nontree mazes and tree mazes (Tables 2a, 2b, 3a and 3b). The

solutions produced by Algorithms H and III are equally good (Tables 4a and 4b) but Algo-

rithm III runs much faster than Algorithm II (Tables 6a, 6b, 7a and 7b).

For nontree mazes, Algorithm III achieves its best results when the persistence factor is

between 0.4 and 0.6, producing solutions that are at most 1.45 times as long as the best possi-

ble solutions for sparse nontree mazes (mazes with density _< 0.5) and 6.5 times as long as the

best possible solutions for dense nontree mazes (mazes with density = 0.9). Moreover, these

performance ratios grow very slowly when compared to the growth rate of the sizes of the

search space. Table 7a shows the computational overhead of Algorithm III for nontree mazes.

- 16-

For persistence factors between 0.4 and 0.6, Algorithm III takes, on the average, between 15

to 24 computational steps for each physical step produced, which is an acceptable trade-off

given today's high-speed computers. (A computational step corresponds to either a vertex

examination or a heap operation. Each vertex examination involves marking the vertex as

visited and adding the vertex's unvisited neighbors to the agenda, and each heap operation

involves comparing a node against its parent and interchanging the positions of the two

nodes.) Table 5a shows the comparisons between the solutions produced by Algorithm III and

hill-climbing search for nontree mazes. Algorithm III clearly outperforms hill-climbing search

in terms of both the frequency of producing better solutions and the average length of the

solutions produced.

For tree mazes, Algorithm III achieves its best results when the persistence factor is

between 0.2 and 0.4. Although the paths for tree mazes produced by Algorithm Ill are on the

average shorter than those produced by hill-climbing search (Table 3b), Algorithm Ill only

produces better solutions 30% percent of the time (Table 5b). This discrepancy is due to the

anomalous behavior of the hill-climbing search. Hill-climbing search actually produces paths

that are shorter than the corresponding average path lengths Rh over 75% of the time. Unfor-

tunately, there are always five to ten runs in each maze group that cause hill-climbing search

to produce paths that are fifty to a hundred times longer than the average lengths. Persistence

search, on the other hand, always produces paths with lengths distributed uniformly around

the corresponding average path lengths Rlt. Hence, persistence search should be used if one

wants a good worst-case performance at the expense of longer computational time -- Algo-

rithm III, with persistence factors between 0.2 and 0.4, takes on the average as high as 85

computational steps for each physical step produced.

In order to better understand how persistence factor affects the performance of per-

sistence search for nontree mazes, another 7000 runs were performed and analyzed empiri-

cally. (See Table 8 for a summary of the input data.) The results of the second experiment

are summarized in Tables 9-11. For all the nontree mazes tested, Algorithm III seems to

- 17 -

perform equally well with different persistence factors between 0.4 and 0.6. More important,

the performance ratios remain fairly constant with respect to the increasing sizes of the search

space. Hence, one can conclude from the experimental results that persistence search with

persistence factor between 0.4 and 0.6 is indeed a very good heuristic algorithm for searching

through unknown nontree mazes.

5. CONCLUSIONS

In this paper, a new search strategy is proposed to minimize the total distance traversed

by an agent in search of the target location. In light of our experimental results, persistence

search is a very good strategy for searching unknown nontree mazes. The success of per-

sistence search comes from its ability to cut across its own path to take advantage of the short

circuits in the terrain, as well as the use of the persistence factor to discount the cost of aban-

doning the current location in order to continue the exploration somewhere else. This is par-

ticularly useful in exploring unknown unbounded mazes. Persistence search (with persistence

factor less than one) always finds the goal as long as it is reachable from the starting location,

while hill-climbing search may make a wrong turn and miss the goal forever. Persistence

search is the preferred strategy for searching tree mazes if one wants to minimize the worst-

case path length. One way to improve the computational efficiency of persistence search for

tree mazes is to modify persistence search so that it behaves like hill-climbing search most of

the time and only evaluates the possibility of backtracking to another frontier vertex once

every K mechanical steps for some large constant K.

6. ACKNOWLEDGMENT

The authors would like to thank Robert B. McGhee for proposing this problem and

Timothy Shimeall for his help in analyzing the experimental results.

- 18 -

7. REFERENCES

[1] G. Dedek, M. Jenkin, E. Milios and D. Wilkes, "Robotic Exploration as Graph Con-

struction," Tech. Report, RBCV-TR-88-23, Department of Computer Science, University

of Toronto, Ontario, Canada, 1988.

[21 S.E. Dreyfus, "An Appraisal of Some Shortest Path Algorithms," Operations Research,

vol. 17, pp. 393-411, 1969.

[3] C.H. Papadimitriou, "Shortest Path Motion," Proc. of the 1987 FST-TCS Conference,

1987.

[4) C.H. Papadimitriou and M. Yannakakis, "Shortest Paths Without a Map," Proc. of the

1989 ICALP Conference, 1989.

[51 P.H. Winston, Artificial Intelligence, 2nd Ed., Addison Wesley, Reading, MA., 1984.

- 19-

group 'naze number maze grid avg. number of avg. length of
number type of mazes density dimension passable cells the shortest paths

(1) nontree 50 0.1 128 x 128 14734.38 84.76
(2) nontree 50 0.1 192 x 192 33503.52 120.84
(3) nontree 50 0.1 256 x 256 59866.72 167.34
(4) nontree 50 0.1 320 x 320 93830.20 215.70

(5) nontree 50 0.3 128 x 128 13137.48 90.35
(6) nontree 50 0.3 192 x 192 29875.64 142.60
(7) nontree 50 0.3 256 x 256 53382.76 175.55
(8) nontre 50 0.3 320 x 320 83697.34 218.54

(9) nontree 50 0.5 128 x 128 11821.24 89.10
(10) nontree 50 0.5 192 x 192 26889.66 138.35
(11) nonae 50 0.5 256 x 256 48046.98 176.68
(12) nontree 50 0.5 320 x 320 75283.82 240.48

(13) nontree 50 0.7 128 x 128 10475.96 106.90
(14) nonrree 50 0.7 192 x 192 23843.44 162.74
(15) nontree 50 0.7 256 x 256 42594.08 205.43
(16) nontree 50 0.7 320 x 320 66799.02 249.33

(17) nontree 50 0.9 128 x 128 7808.36 177.92
(18) nontree 50 0.9 192 x 192 17914.74 226.88
(19) nonree 50 0.9 256 x 256 32259.48 300.98
(20) nontree 50 0.9 320 x 320 50661.42 384.26

(21) tree 50 0.1 128 x 128 8884.88 720.03
(22) tree 50 0.1 192 x 192 20156.64 1554.56
(23) tree 50 0.1 256 x 256 35960.40 2536.39
(24) tree 50 0.1 320 x 320 56326.42 3259.97

(25) tree 50 0.3 128 x 128 9077.72 869.04

(26) tree 50 0.3 192 x 192 20608.66 1932.15
(27) tree 50 0.3 256 x 256 36778.46 2878.34
(28) tree 50 0.3 320 x 320 57575.86 4719.78

(29) tree 50 0.5 128 x 128 8890.08 875.58
(30) tree 50 0.5 192 x 192 20222.80 .1929.14
(31) tee 50 0.5 256 x 256 36088.92 2961.83
(32) tree 50 0.5 320 x 320 56561.28 3924.45

(33) tree 50 0.7 128 x 128 8168.80 745.53
(34) tree 50 0.7 192 x 192 18670.30 1573.50
(35) tree 50 0.7 256 x 256 33447.74 2526.46
(36) tree 50 0.7 320 x 320 51407.10 3821.66

(37) tree 50 0.9 128 x 128 5397.86 455.80
(38) tree 50 0.9 192 x 192 12674.86 901.80
(39) tree 50 0.9 256 x 256 22907.76 1624.02
(40) tree 50 0.9 320 x 320 36279.30 2340.57

Table 1 Summary of the 2000 mazes used in the first experiment

- 20 -

group pf=0.0 pf=0.2 pf=0.4 Ipf=0.6 pf=0.8 pf=1.O

(1) 1.105 1.060 1.060 1.060 1.060 1.060 1.071
(2) 1.080 1.061 1.061 1.061 1.061 1.061 1.074
(3) 1.101 1.065 1.065 1.065 1.065 1.065 1.073
(4) 1.116 1.05S 1.058 1.058 1.058 1.058 1.075

(5) 1.748 1.193 1.193 1.192 1.195 1.197 1.267
(6) 1.715 1.198 1.198 1.195 1.197 1.198 1.249
(7) 1.432 1.210 1.207 1.207 1.210 1.209 1.248
(8) 2.351 1.211 1.211 1.210 1.211 1.213 1.271

(9) 4.710 1.433 1.422 1.394 1.415 1.422 1.579
(10) 4.940 1.454 1.435 1.429 1.446 1.452 1.583
(11) 3.948 1.435 1.428 1.417 1.425 1.430 1.561
(12) 6.434 1.460 1.438 1.435 1.434 1.487 1.656

(13) 10.725 2.195 2.023 1.985 1.958 2.003 2.488
(14) 11.492 2.213 1.993 1.986 !.971 2.031 2.409
(15) 13.249 2.296 2.055 1.997 2.013 2.031 2.453
(16) 16.514 2.226 2.037 1.971 1.976 1.980 2.348

(17) 17.403 14.515 6.241 5.994 6.089 6.411 7.505
(18) 31.105 12.015 5.686 5.066 5.511 6.144 8.472
(19) 50.371 15.597 6.491 5.991 6.469 6.392 8.663
(20) 68.756 12.093 5.608 5.305 5.216 5.581 7.118

Table 2a • Summary of the results for Algorithm II on the
nontree mazes in the first experiment

Note:

Rh "" the average value of h-moves/min-moves over the 200 runs in each maze
group,

RII -- = the average value of li-moves/min-moves over the 200 runs in each maze
group,

where
h-moves -- the total number of physical moves required by the agent to

reach the goal under hill-climbing search,

Il-moves -- the total number of physical moves required by the agent to
reach the goal under Algorithm II,

min-moves -- the length of the shortest path from s to t in the entire maze.

-21 -

group pf 0.0 pf = 0.2 pf 0.4 pf = 0.6 pf = 0.8 Pf = 1.0

(21) 13.065 38.997 10.895 10.296 11.488 9.673 13.065
(22) 13.666 67.050 14.577 14.979 14.631 13.789 13.666
(23) 29.515 95.562 17.136 16.171 17.489 17.251 29.515
(24) 23.079 110.570 19.272 19.206 21.156 21.031 23.079

(25) 10.059 31.770 10.876 10.571 10.583 9.094 10.059
(26) 12.543 58.243 12.713 11.933 12.484 12.213 12.543
(27) 51.699 75.415 13.650 16.174 18.977 18.357 51.699
(28) 26.052 109.929 16.981 20.367 22.071 18.719 26.052

(29) 11.863 33.949 9.291 10.315 10.824 9.384 11.863
(30) 19.964 54.030 11.058 12.647 13.566 12.528 19.964
(31) 17.367 72.856 15.579 15.141 15.927 15.336 17.367
(32) 22.518 94.564 16.875 18.393 20.809 20.476 22.518

(33) 10.069 32.153 9.023 9.370 9.044 9.736 10.069
(34) 18.723 46.966 12.327 11.305 11.729 12.003 18.723
(35) 20.672 70.423 13.882 15.400 15.399 15.133 20.672

(36) 46.383 90.225 14.504 15.458 18.954 16.293 46.383

(37) 10.989 31.353 7.724 8.086 7.298 8.905 10.9S9
(38) 30.009 48.389 10.447 10.460 10.028 10.274 30,009
(39) 24.401 70.389 13.050 13.078 12.920 15.196 24.401

(40) 17.953 82.959 13.639 14.820 14.251 13.847 17.953

Table 2b : Summary of the results for Algorithm II on the

tree mazes in the first experiment

- 22 -

maze -R-1_

group pf = 0.0 pf = 0.2 pf = 0.4 pf = 0.6 pf = 0.8 }Pf = 1.0

(1) 1.105 1.060 1.060 1.060 1.060 1.060 1,071
(2) 1.080 1.061 1.061 1.061 1.061 1.061 1,074
(3) 1.101 1.065 1.065 1.065 1.065 1.065 1.073
(4) 1.116 1.058 1.058 1.058 1.058 1.058 1.075

(5) 1.748 1.193 1.193 1.192 1.195 1.197 1.267
(6) 1.715 1.198 1.198 1.195 1.197 1.198 1.249
(7) 1.432 1.210 1.207 1.207 1.210 1.209 1,248
(8) 2.351 1.211 1.211 1.210 1.211 1.213 1.271

(9) 4.710 1.433 1.422 1.394 1.415 1.422 1.579
(10) 4.940 1.454 1.435 1.429 1.446 1.452 1.583
(11) 3.948 1.435 1.428 1.417 1.425 1.430 1.561
(12) 6.434 1.460 1.438 1.435 1.434 1.487 1.656

(13) 0 725 2.195 2.023 1.985 1.958 2.003 2.188
(14) 11.492 2.213 1.998 1.986 1.971 2.030 2.409
(15) 13.249 2.296 2.055 1.996 2.013 2.031 2.453
(16) 16.514 2.226 2.037 1.972 1.976 1.980 2.348

(1) i7.403 14.515 6.242 6.020 6.092 6.411 7.505
(18) 31.105 12.015 5.686 5.064 5.512 6.144 8.472
(19) 50.371 15.597 6.491 5.993 6.471 6.394 8.663
(20) 68.756 12.093 5.608 5.305 5.213 5.581 7.118

Table 3a : Summary of the results for Algorithm III on the
nontree mazes in the first experiment

Note:

S-- the average value of h-moves/rin-moves over the 200 runs in each maze
group,

-- = the average value of II-moves/min-moves over the 200 runs in each maze
group,

where

h-moves -- the total number of physical moves required by the agent to
reach the goal under hill-climbing search,

111-moves -- the total number of physical moves required by the agent to
reach the goal under Algorithm III,

min-moves -- the length of the shortest path from s to t in the entire maze.

- 23 -

maze' kill ___

group pf = 0.0 pf = 0.2 Pf =0.4 pf = 0.6 pf = 0.8 pf= 1.0

(21) 13.065 38.997 10.895 10.296 11.488 9.673 13.065
(22) 13.666 67.050 14.577 14.979 14.631 13.789 13.666
(23) 29.515 95.562 17.136 16.171 17.489 17.251 29.515
(24) 23.079 110.570 19.272 19.206 21.156 21.031 23.079

(25) 10.059 31.770 10.876 10.571 10.583 9.094 10.059
(26) 12.543 58.243 12.713 11.933 12.484 12.213 12.543
(27) 51.699 75.415 13.650 16.174 18.977 18.357 51.699
(28) 26.052 109.929 16.981 20.367 22.071 18.719 26.052

(29) 11.863 33.949 9.291 10.315 10.824 9.384 11.863
(30) 19.964 54.030 11.058 12.647 13.566 12.528 19.964
(31) 17.367 72.856 15.579 15.141 15.927 15.336 17.367
(32) 22.518 94.564 16.875 18.393 20.809 20,476 22.518

(33) 10.069 32.153 9.023 9.370 9.044 9.736 10.069
(34) 18.723 46.966 12,327 11.305 11.729 12.003 18.723
(35) 20.672 70.423 13.882 15.400 15.399 15.133 20.672
(36) 46.383 90.225 14.504 15.458 18.954 16.293 46.383

(37) 10.989 31.353 7.724 8.086 7.298 8.905 10.989
(38) 30.009 48.389 10.447 10.460 10.028 10.274 30.009
(39) 24.4.01 70.389 13.050 13.078 12.920 15.196 24.4101
(40) 17.953 82.959 13.639 14.820 14.251 13.8-47 17.953

Table 3b Summary of the results for Algorithm III on the
tree mazes in the first experiment

- 24 -

A 000 0000<= C 00CD00 0000 C 0CD00

IM

C 4 C-4 C4 N N C14CJC ~N Cq ' C4 C 4 N 4 N C'e4

v 0000 0 00C 0 0C0 000 C>C: 0 0 000 D C

A> 00020 000 CD0 0000D -cn-o c% rn"t

c

oq E

4 C14 C,4C C14 NC14 4 C14 O'O O

x

0000 C 000Co0 0000a co0m Ml,'Str-

A CD0000=CD0000=00000C- 00 C - ' C4

o 0 0
U

'0 N

C4 C C1C'4 C4 C C C4 NC1 NF ~C4 -0'a

E E E

Av) 000 0 0 00 0000 00m<= 0,

w U 4

A 000CD0 CD00CD00 000C 0 0 0 2 C9 2

UqC4c C4c 1 r Ce4c C14 N -rN 2 CN4 -q

A 000 0000 0000 C 000 ~0 (2 0D 0C0

_ _ _ _ _ _

00

A 000CD0 000 0 c0ac00 CD000 0 00

N r) r C
E -

- 25 -

Ei

A 000 000aa0 000a0 CD0000 a0 00

A 000 000 0a00a0 000 a0 0 a000

E S

v 000 00 000 0000 0000cC c o o a f

C% 1 C44 C 4C4 ~C C14 C~4 AC4 oqCN C% 1 C4C14 C,4' C,

E

v 000 0000 0 00 0 00 c0 00 00 U

A 000 000 0 0 0 0 00 0 0 C0)0 0

Cq C4 C1 q C4 C4 C14 C C14 144 "C~e 4 C14" 14 Cq C14
Cz

0000 000 000 000 0 C0 E

0
A 0000 00 0000 0 00 0 000

v00000 0000 0000 0000

0~

00

C84u

V 0000 0 00 0 0000 0000 0 0 0 0

VI 00 IN M I

- 26.

0A~'~O '-0 COs'q V1 C'4 'C0

oe W)
It CS0 C % " C,4

00 ob 'D)

00.

C14)

0
-c- ~ ~ ~ ~ ~ %- $- 2or ~- 0 ooa)0

-0 0 0
'C.4

M! M C-4 M Cn 'n "T N 40'
t, E

C14 -n 00 - -- -

A 0-T ; ' N e c-n Oc t-ooo'. - c r- '. ON~
-q V) V4) 'TM)

0 00'c-e 0 0 0 a

-1 - - - - -I W4) V) %n 'T 'I zV)L

.v 11 A

A~~~~~r to). Uf '-c -~r

0 E~

III o '.c 4n~e' un- i Vl II An % n

2 1 - -r
. -=

_______C- _____ ____E) to
c-~e~'.~o.-~ ~6 6

-27 -

A C o 0000oc 000 0 00 0 z 0D00c

4.)

V l 00CD00 000 0 0 000 0000(nm or-a
AU

O- Ol e'ao 4o V) -o en W 'r-~ N 1

kn6) - -: T W0c V, 00 nr

6n Ln r--) C - O O C
a C ! ,-! 2

en a- r,~~ 0% 00 C14aON n

2 00 'T r '- 00 V)00cCr- 4.r-N)Cr- t

I.-

A a 00 - 0 - 0l -00 r, - 0 r r-- E

- -- - - -O -~ -f r ~- 0 - - --

C 4-0 C-00 -r-n f- M- ~ O -- -C- -

* 28

0 - ' 00Q 0% 00 ' D 000 CD 00% C1$:v ~ 0 r-O 0%0 12,'o o.

C4C ---- - - -

V IV0% 00 % 0 -ITN0 C-4 1t('r01 4 0 -

',0 r .0 0 r- a, %'0- %nC 00

00 00 o 6e 'Ou ~ 'ITeJ~ r-00%0 r- 14c CP V

%A tAo - r-oor a

eq 0% 0 -0(C7, 0r0 C4 ' 0, o00 e 0 c
r- %n a, -14 %n 000 (000 C

C-4~~~~ C4 -
0

-- -

r- ~~~~ ~ ~ ~ 0% 00 c 0 7 4 0 0 cE

F. Vq CUn q 0r I N-L

tw Cl C.u

r W 0%0 0000 C1 0~ 0(OC\'T C0 mV .C *E E

m l CI00 ~ V, 4. Ca .- L

NN (N W*C -N w ' oI

C -

0 .C% >

r~- - " >.0C-

CU

8C 00
r-0%r4 r-(r-n (N0% fk0 hI 00< 00

Oq~' ORI OC* n : t

(-1%0 r

2-* 1" ,-. '-c

r4 wl ' - r-0 0C m- V'

-29-

N 0O0\ CN0\0 n C 00 Cc* C4

~c~-0 - -.- ' oor-- -- o0 4n -- -

0- C7 -1 0 0% L *

r- N P2 r,

00 C-4 -0 -~ -00- '4 N ' N 004 N .4
6 J

o a.

\0 - -''. -0e~- 00 'C 0'i C-4- C, E ,

O%01' C4- '. 'I-n'TW
Ca'oo'.04. r 0O 01, N 0 1%0V)t C4 \'0 - i

CD -- r- C-- t 14 -=a CA-~ r

06 0 - : . n n c - 01 cc r- 4 0
N ~ ~ ~ ~ ~ 0f w'lOr- 00 e n , e t l im 0 Nk

a, 00~ ' 'ne D0 00- 00 eIn 'I 0

00.~%r'o-.00 cco '-
C%0 .O CD -~r N00 o --l .

0 I - 0\~r r- r- 0 C?0"Om

tn en= en c 0 .i C; n 0 e o ' r v.. 0 m~0 0 0 C'4O0 (N e n >f --O

0000 0-0 w' 0- -no0r
0 'n 000 000 0000 0000i

m000 00 n ,Ne 000'0 0

N r r- en N 0

~e

- 30 -

en C,4 r- cq-O000 0% 00 - Ocli00 co D0% C14
%n k 00 C r00U 00 0%- o0 e -

o A r-C n%0 r-e Cl =~~ 6 c ,

r - -40 00 4 r- M C4f %Qf %n0 V

C14 O00 C14r~ C14Ot 'j,0o VOO C7 U 0c
U 4- cN cl N~ J V: en0 0

00000vqt0%0% kn r-
en tnr- VI rq u0o0 - C4 m N o

II ~00 0

r- 0u00 00 O 'T ~e - 0 0.d

C7 N r mc C n -40 u 00 v m m r g m
2%~ 0%0M00%

C-4 C4 - - -- -~ 4' -- o o -' -- sC

00 *- o

'rr NC r-~ 4 00-00 0e'0 C 'n
0i "I Ul* O . U S 0 \ q n 0C4

-~~~~~~C -o - -o. - C -o i C iz

0000~r (-~~ ~U0
- - > 'o 0

0% .- , m. -% 00 E . - -

kn~ r oR r, C4 r- 's ,4 Q% 0n %n C

- 31-

C, C,''O c'c c 'r14 en 0 W) %0 %n 0% 0% CN4 m a,

Nj e '4 IACq N 4 e W4 N'~'a~ eqC - qC4C

00 xn00 C4 ;; -e4 00 r
0'rN' a, r, r- e.Q WI -o O c 00%- o oe

t--0% en W-1C40 z 0% V Ir W)%n r - C,40 C14

C4 - -- - -- -0 - N N % C- UqNC
a, en 00 n~ 000% V--

00 ~ ~ ~ ~ ~ 0 (71 e-- eC-- c'--e e- ~'e ~ u

r -~- C%0T % O00, N' 1* m~ m EN

0%000- 00r-m00000F

el CC O l
r- ~0N n D 0C4 0 C14 C --. 'o- C 4W) r- C4 0

00f
en C%~Nr t-r 0 0 % CN en~0O en V) 0

00 00 00
NO-qC- !C. 0 C14' -- q C4

rn 0 l 0C14WI % t-0- r0%- -oC

.:: -- " q '

.,t 0, 'D = oe fn m r- 0, 0\0 r-W. - *
NC C4 -0 14 N C4 C4 00i 00 Ci

m0V 0 0 00c -0 k ,knC46

) 4= 000 000 0 N rl 0

00

=t00 eqCO
\0 enN00 %n~ 14%

-(0r 00 00 r 009 r-(Cn 00 ~ 4=0

-32-

group maze number maze grid avg. number of avg. length of
number type of mazes density dimension I passable cells the shortest paths

(41) nontree 50 0.1 128 x 128 14735.60 81.12
(42) nontree 50 0.1 192 x 192 33498.10 127.92
(43) nontree 50 0.1 256 x 256 59854.94 178.71
(44) nontree 50 0.1 320 x 320 93825.78 213.85

(45) nontree 50 0.1 384 x 384 135424.20 248.73
(46) nontree 50 0.1 448 x 448 184573.90 283.32
(47) nontree 50 0.1 512 x 512 241348.26 338.12

(48) nontree 50 0.3 128 x 128 13135.72 92.65
(49) nontree 50 0.3 192 x 192 29874.00 132.12
(50) nontree 50 0.3 256 x 256 53392.28 174.03
(51) nontree 50 0.3 320 x 320 83700.30 209.69
(52) nontree 50 0.3 384 x 384 120756.36 231.48
(53) nontree 50 0.3 448 x 448 164621.7. 306.44

(54) nontree 50 0.3 512 x 512 215232.52 339.97

(55) nontree 50 0.5 128 x 128 11825.30 84.90
(56) nontree 50 0.5 192 x 192 26873.38 146.76
(57) nontree 50 0.5 256 x 256 48046.96 172.79
(58) nontree 50 0.5 320 x 320 75301.88 230.09
(59) nontree 50 0.5 384 x 384 108664.68 275.99
(60) nontree 50 0.5 448 x 448 148092.66 293.89
(61) nontree 50 0.5 512 x 512 193664.86 336.02

(62) nontree 50 0.7 128 x 128 10476.06 107.81

(63) nontree 50 0.7 192 x 192 23821.20 142.65
(64) nontree 50 0.7 256 x 256 42604.00 186.06

(65) nontree 50 0.7 320 x 320 66786.08 240.72
(66) nontree 50 0.7 384 x 384 96425.50 304.05
(67) nontree 50 0.7 448 x 448 131414.64 346.17
(68) nontree 50 0.7 512 x 512 171841.42 430.79

(69) nontree 50 0.9 128 x 128 7800.44 155.87
(70) nontree 50 0.9 192 x 192 17865.94 249.40
(71) nontree 50 0.9 256 x 256 32196.04 312.63
(72) nontree 50 0.9 320 x 320 50536.52 392.20
(73) nontree 50 0.9 384 x 384 73132.48 429.22
(74) noncree 50 0.9 448 x 448 99938.46 482.32
(75) nonree 50 0.9 512 x 512 130727.92 568.87

Table 8 : Summary of the 1750 mazes used in the second experiment

- 33 -

maze R
group pf = 0.40 pf = 0.45 pf = 0.50 pf = 0.55 pf = 0 .60

(41) 1.222 1.066 1.066 1.066 1.066 1.066
(42) 1.438 1.066 1.066 1.067 1.067 1.067
(43) 1.146 1.070 1.070 1.071 1.071 1.071
(44) 1.077 1.062 1.062 1.062 1.062 1.062
(45) 1.069 1.062 1.062 1.062 1.062 1.062
(46) 1.074 1.064 1.064 1.064 1.064 1.064
(47) 1.081 1.063 1.063 1.063 1.063 1.063

(48) 1.781 1.194 1.194 1.193 1.193 1.194
(49) 1.552 1.200 1.200 1.202 1.202 1.202
(50) 2.367 1.207 1.207 1.210 1.210 1.211
(51) 2.764 1.196 1.196 1.198 1.198 1.199
(52) 1.490 1.208 1.207 1.209 1.209 1.210
(53) 1.406 1.222 1.222 1.223 1.223 1.225
(54) 1.390 1.188 1.188 1.189 1.189 1.189

(55) 2.995 1.438 1.438 1.423 1.423 1.432
(56) 5.641 1.412 1.414 1.419 1.418 1.416
(57) 3.812 1.500 1.500 1.508 1.508 1.523
(58) 4.624 1.408 1.411 1.411 1.411 1.413
(59) 11.396 1.428 1.429 1.433 1.433 1.436
(60) 2.542 1.444 1.444 1.445 1.446 1.445
(61) 3.067 1.437 1.438 1.435 1.435 1.438

(62) 10.408 2.062 2.087 2.078 2.078 2.100
(63) 32.736 2.123 2.132 2.115 2.117 2.095
(64) 11.397 1.928 1.934 1.927 1.925 1.934
(65) 36.639 1.990 1.983 1.995 1.999 2.015
(66) 19.107 1.996 2.011 2.011 2.014 2.026
(67) 16.616 2.010 2.011 1.975 1.980 1.970
(68) 32.626 1.966 1.958 1.965 1.967 1.963

(69) 23.815 5.131 5.211 5.285 5.293 5.489
(70) 32.713 5.096 5.031 4.918 5.100 5.306
(71) 53.981 5.141 5.231 5.018 4.969 5.216
(72) 46.527 5.751 5.321 5.699 5.800 5.509
(73) 63.471 5.567 5.555 5.408 5.399 5.621
(74) 67.442 5.106 5.275 5.289 5.263 5.095
(75) 78.456 5.668 5.849 5.895 6.069 5.937

Table 9 Summary of the results for Algorithm III on the
nontree mazes in the second experiment

-34-

p!= 0.40 pf= 0.45 pf]0.50 } , -0.55 pf= 0.60

group m<h m=h in>h in<h m=h w>h ui<h ui=h iu>h in<h in=h m>h m<h m=h un>h

(41) 18 173 9 18 173 9 18 173 9 18 173 9 18 173 9
(42) 31 152 17 31 152 17 31 152 17 31 152 17 31 152 17
(43) 42 129 29 42 129 29 42 129 29 42 129 29 42 129 29
(44) 39 132 29 39 132 29 39 132 29 39 132 29 39 132 29
(45) 40 132 28 40 132 28 40 132 28 40 132 28 40 132 28
(46) 51 126 23 51 126 23 51 126 23 51 126 23 51 126 23
(47) 52 118 30 52 118 30 52 118 30 52 118 30 52 118 30

(48) 100 54 46 100 54 46 101 53 46 101 53 46 101 53 46
(49) 100 48 52 100 48 52 100 48 52 100 48 52 100 48 52
(50) 110 28 62 110 28 62 110 28 62 110 28 62 109 29 62
(51) 122 35 43 122 35 43 122 35 43 122 35 43 121 36 43
(52) 124 24 52 124 24 52 122 25 53 122 25 53 120 26 54
(53) 138 17 45 138 17 45 137 16 47 137 16 47 136 15 49
(54) 135 19 46 135 19 46 134 21 45 134 21 45 134 21 45

(55) 119 30 51 119 30 51 119 30 51 119 30 51 119 29 52
(56) 138 11 51 137 11 52 136 11 53 136 11 53 135 10 55
(57) 136 12 52 136 12 52 137 12 51 137 12 51 138 12 50
(58) 153 9 38 152 7 41 152 7 41 152 7 41 151 8 41
(59) 154 3 43 154 2 44 152 3 45 152 3 45 152 3 45
(60) 147 6 47 147 6 47 148 4 48 148 4 48 148 6 46
(61) 147 4 49 145 4 51 148 4 48 118 4 48 147 3 50

(62) 162 3 35 161 4 35 164 3 33 165 3 32 165 4 31
(63) 148 6 46 146 6 48 147 7 46 147 7 46 147 6 47
(64) 152 1 47 152 1 47 150 2 48 150 2 48 150 2 48
(65) 153 2 45 154 3 43 155 2 43 155 2 43 154 4 42
(66) 152 2 46 152 1 47 152 0 48 151 0 49 151 1 48
(67) 160 2 38 164 1 35 160 2 38 160 2 38 162 3 37
(68) 174 0 26 174 1 25 171 0 29 171 0 29 171 0 29

(69) 132 8 60 133 8 59 128 8 64 130 8 62 129 10 61
(70) 154 0 46 156 0 44 155 0 45 152 1 47 151 0 49
(71) 150 2 48 152 2 46 155 2 43 154 2 4-4 149 2 49
(72) 158 1 41 157 1 42 156 1 43 155 2 43 156 1 43
(73) 154 0 46 157 0 43 161 0 39 157 0 43 159 0 41
(74) 164 0 36 162 0 38 160 0 40 160 0 40 16 0 38
(75) 155 1 44 151 1 48 150 1 49 150 1 49 151 1 48

Table 10 Comparisons between Algorithm fII and hill-climbing search
for the nontree mazes in the second experiment

- 35 -

maze f = 0. 40 [/= 0.45 pf = 0.50 pf = 0.55 pf 0.60

group v-exam h-op v-exam h-op v-exam h-op v-exn h-op v-exam h-op

(41) 1.132 17.056 1.135 17.056 1.094 17.056 1.127 17.056 1.130 17.056
(42) 1.146 19.362 1.140 19.362 1.097 19.359 1.134 19.359 1.130 19.358
(43) 1.143 20.990 1.134 20.990 1.097 20.989 1.135 20.989 1.127 20.987
(44) 1.123 22.004 1.112 22.004 1.081 22.004 1.122 22.004 1.110 22.004
(45) 1.127 22.610 1.118 22.610 1.086 22.610 1.129 22.610 1.122 22.608
(46) 1.122 23.432 1.114 23.432 1.084 23.432 1.127 23.432 1.118 23.432
(47) 1.125 24.180 1.112 24.180 1.084 24.181 1.131 24.181 1.118 24.181

(48) 1.389 14.009 1.403 14.009 1.308 14.023 1.371 14.023 1.391 14.023
(49) 1.454 15.349 1.444 15.349 1.367 15.344 1.443 15.344 1.451 15.349
(50) 1.441 16.415 1.426 16.415 1.355 16.416 1.441 16.416 1.445 16.413
(51) 1.391 17.203 1.377 17.204 1.309 17.197 1.394 17.197 1.391 17.192
(52) 1.412 17.823 1.385 17.826 1.318 17.821 1.418 17.821 1.402 17.820
(53) 1.458 18.6FO 1.440 18.680 1.364 18.682 1.462 18.682 1.467 18.672
(54) 1.367 19.321 1.351 19.321 1.291 19.327 1.386 19.327 1.376 19.324

(55) 1.790 10.165 1.796 10.166 1.672 10.188 1.780 10.188 1.833 10.183
(56) 1.811 12.215 1.805 12.212 1.693 12.214 1.806 12.218 1.801 12.226
(57) 1.902 12.507 1.891 12.517 1.786 12.528 1.913 12.533 1.942 12.535
(58) 1.763 13.635 1.771 13.633 1.641 13.637 1.764 13.637 1.775 13.650
(59) 1.798 14.343 1.766 14.341 1.677 14.328 1.810 14.327 1.811 14.325
(60) 1.853 14.464 1.833 14.468 1.762 14.482 1.899 14.482 1.877 14.476
(61) 1.833 14.810 1.807 14.812 1.716 14.860 1.867 14.860 1.882 14.848

(62) 2.710 7,475 2.817 7.466 2.667 7.504 2.814 7.504 3.024 7.492
(63) 2.797 8.080 2.864 8.079 2.745 8.108 2.891 8.107 2.927 8.166
(64) 2.540 8.992 2.523 8.989 2.447 9.009 2.601 9.017 2.644 9.035
(65) 2.610 9.571 2.597 9.583 2.515 9.587 2.700 9.587 2.810 9.593
(66) 2.625 10.219 2.717 10.203 2.611 10.220 2.779 10.218 2.863 10.212
(67) 2.744 10.239 2.747 10.260 2.555 10.324 2.732 10.316 2.819 10.349
(68) 2.627 11.135 2.588 11.172 2.476 11.203 2.663 11.200 2.740 11.232

(69) 8.163 3.829 9.760 3.843 10.452 3.857 11.030 3.836 10.720 3.858
(70) 8.389 4.442 8.175 4.493 8.563 4.554 9.208 4.551 9.704 4.556
(71) 10.319 4.655 9.844 4.706 9.235 4.749 9.397 4.760 10.196 4.741
(72) 9.711 4.887 9.124 4.943 10.417 4.978 10.919 5.002 10.337 5.074
(73) 10.296 4.979 10.159 5.003 'AI "I" < n W ,1mO.101 11.841 5.125
(74) 9.363 5.335 10.528 5.324 10.895 5.382 11.468 5.382 10.284 5.490
(75) 13.050 5.372 13.775 5.397 14.978 5.466 16.762 5.478 15.677 5.526

Table 11 : Average number of vertex examinations and heap exchanges required
by Algorithm III for the nontree mazes in the second experiment

Distribution List

Defense Technical Information Center,
Cameron Station,
Alexandria, VA 22304-6145 2 copies

Library, Code 0142
Naval Postgraduate School,
Monterey, CA 93943 2 copies

Center for Naval Analyses,
4401 Ford Avenue
Alexandria, VA 22302-0268 1 copy

Director of Research Administration,
Code 012,
Naval Postgraduate School,
Monterey, CA 93943 1 copy

Professor Robert B. McGhee
Code CS
Naval Postgraduate School
Monterey, California 93943-5100 1 copy

Dr. Man-Tak Shing
Code CS
Naval Postgraduate School,
Monterey, California 93943-5100 20 copies

LT Michael Mayer, USN
Software Support Department
Naval Security Group Activity Skaggs Island
Sonoma, CA 95476 10 copies

Professor Evangelos Milos
Department of Computer Science
University of Toronto
Toronto, Ontario, CANADA
M5S 1A4 1 copy

